Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current.

نویسندگان

  • Jingdong Li
  • Celine Marionneau
  • Olha Koval
  • Leonid Zingman
  • Peter J Mohler
  • Jeanne M Nerbonne
  • Mark E Anderson
چکیده

Mice with genetic inhibition (AC3-I) of the multifunctional Ca(2+)/calmodulin dependent protein kinase II (CaMKII) have improved cardiomyocyte survival after ischemia. Some K(+) currents are up-regulated in AC3-I hearts, but it is unknown if CaMKII inhibition increases the ATP sensitive K(+) current (I(KATP)) that underlies ischemic preconditioning (IP) and confers resistance to ischemia. We hypothesized increased I(KATP) was part of the mechanism for improved ventricular myocyte survival during ischemia in AC3-I mice. AC3-I hearts were protected against global ischemia due to enhanced IP compared to wild type (WT) and transgenic control (AC3-C) hearts. IKATP was significantly increased, while the negative regulatory dose-dependence of ATP was unchanged in AC3-I compared to WT and AC3-C ventricular myocytes, suggesting that CaMKII inhibition increased the number of functional I(KATP) channels available for IP. We measured increased sarcolemmal Kir6.2, a pore-forming I(KATP) subunit, but not a change in total Kir6.2 in cell lysates or single channel I(KATP) opening probability from AC3-I compared to WT and AC3-C ventricles, showing CaMKII inhibition increased sarcolemmal I(KATP) channel expression. There were no differences in mRNA for genes encoding I(KATP) channel subunits in AC3-I, WT and AC3-C ventricles. The I(KATP) opener pinacidil (100 microM) reduced MI area in WT to match AC3-I hearts, while the I(KATP) antagonist HMR1098 (30 microM) increased MI area to an equivalent level in all groups, indicating that increased I(KATP) and augmented IP are important for reduced ischemic cell death in AC3-I hearts. Our study results show CaMKII inhibition enhances beneficial effects of IP by increasing I(KATP).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ischemic preconditioning inhibits mitochondrial respiration, increases H2O2 release, and enhances K+ transport.

Ischemic preconditioning, or the protective effect of short ischemic episodes on a longer, potentially injurious, ischemic period, is prevented by antagonists of mitochondrial ATP-sensitive K+ channels (mitoKATP) and involves changes in mitochondrial energy metabolism and reactive oxygen release after ischemia. However, the effects of ischemic preconditioning itself on mitochondria are still po...

متن کامل

Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty.

BACKGROUND The ischemic preconditioning response among elderly patients is known to be lower than in adult patients. Since mitochondrial ATP-sensitive potassium (K(ATP)) channels exert preconditioning effects, we undertook this study to determine whether this attenuated activation of K(ATP) channels influences the reduced responsiveness of elderly patients to ischemic preconditioning. METHODS...

متن کامل

Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics.

Although ischemic preconditioning induces bioenergetic tolerance and thereby remodels energy metabolism that is crucial for postischemic recovery of the heart, the molecular components associated with preservation of cellular energy production, transfer, and utilization are not fully understood. Here myocardial bioenergetic dynamics were assessed by (18)O-assisted (31)P-NMR spectroscopy in cont...

متن کامل

NO stimulation of ATP-sensitive potassium channels: Involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection.

ATP-sensitive potassium (K(ATP)) channels regulate insulin release, vascular tone, and neuronal excitability. Whether these channels are modulated by NO, a membrane-permeant messenger in various physiological and pathological processes, is not known. The possibility of NO signaling via K(ATP) channel modulation is of interest because both NO and K(ATP) have been implicated in physiological func...

متن کامل

Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning.

Mitochondrial ATP-sensitive K (mitoK(ATP)) channels play a central role in protecting the heart from injury in ischemic preconditioning. In isolated mitochondria exposed to elevated extramitochondrial Ca, P(i), and anoxia to simulate ischemic conditions, the selective mitoK(ATP) channel agonist diazoxide (25-50 microM) potently reduced mitochondrial injury by preventing both the mitochondrial p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Channels

دوره 1 5  شماره 

صفحات  -

تاریخ انتشار 2007